Dark Matter: Looking for WIMPs in the Galactic Halo

Dan Akerib
Case Western Reserve University
CDMS Collaboration

PANIC 27 October 2005

Standard Cosmology

Non-Baryonic Dark Matter

- Matter density
 - $\Omega_{\text{Matter}} = 0.30 \pm 0.04$
- Big Bang Nucleosynthesis
 - $\Omega_{\text{Baryons}} = 0.05 \pm 0.005$
- Nature of dark matter
 - Non-baryonic
 - Large scale structure predicts DM is 'cold'
- WIMPs Weakly Interacting Massive Particle
 - ◆ ~10–1000 GeV Thermal relics
 - **◆** T_{FO} **~** m/20
 - σ_A ~ electroweak scale

SUSY/LSP

WIMPs in the Galactic Halo

WIMPs – the source of Mass in the Rotation Curves?

WIMP-Nucleus Scattering

Scatter from a Nucleus in a Terrestrial Particle Detector

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Experimental bounds & unconstrained models

DATA listed top to bottom on plot DAMA 2000 58k kg-days NaI Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Baltz and Gondolo 2003

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Constrained by theory

DATA listed top to bottom on plot DAMA 2000 58k kg-days Naf Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Baer et. al 2003

Baltz and Gondolo 2003

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Constrained by theory

DATA listed top to bottom on plot DAMA 2000 58k kg-days Naf Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Chattopachyay et. al Theory results - post WMAP Baer et. al 2003

Baltz and Gondolo 2003

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Theoretical benchmarks

DATA listed top to bottom on plot DAMA 2000 58k kg-days Naf Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Chattopadhyay et. al Theory results - post WMAP Baer et. al 2003 Ellis et. al Theory region post-LEP benchmark points Baltz and Gondolo 2003

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Constrained by theory

DATA listed top to bottom on plot DAMA 2000 58k kg-days Naf Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Guidice and Romanino, 2004, mu < 0 A. Pierce, Finely Tuned MSSM Guidice and Romanino, 2004, mu > 0

Chattopadhyay et. al Theory results - post WMAP Baer et. al 2003

Ellis et. al Theory region post-LEP benchmark points Baltz and Gondolo 2003

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - **Extract WIMP-nucleon cross**section (~event rate) versus WIMP mass

Cross-section [cm²] (normalised to nucleon) Gaitskell&Mandi 10^{-42} 10^{2} 10^{4} 10 WIMP Mass [GeV]

Muon g-2 from SUSY?

DATA listed top to bottom on plot DAMA 2000 58k kg-days Nal Ann Mod. 3sigma,w/o DAMA 1996 limit Edelweiss, 32 kg-days Ge 2000+2002+2003 limit CDMS (Soudan) 2004 Blind 53 raw kg-days Ge Guidice and Romanino, 2004, mu < 0 A. Pierce, Finely Tuned MSSM Guidice and Romanino, 2004, mu > 0 Chattopadhyay et. al Theory results - post WMAP Baltz and Gondolo, 2004, Markov Chain Monte Carlos (1 sigma)

http://dmtools.brown.ed

Baer et. al 2003 Ellis et. al Theory region post-LEP benchmark points Baltz and Gondolo 2003

Baltz and Gondolo, 2004, Markov Chain Monte Carlos

- The 'standard' progress plot in our business
 - Sample SUSY parameter space
 - Apply accelerator and other particle physics constraints
 - Bound on relic density, eg, WMAP
 - Extract WIMP-nucleon crosssection (~event rate) versus WIMP mass

Muon g-2 from SUSY?

Direct Detection and Accelerators

- Broad mass range of Direct Detection
 - LHC has 2 Tev limit for gluino, squark, slepton: neutralinos only up to 300 GeV in most SUSY models
 - Direct Detection may indicate a mass too large for LHC and provide clues for ILC
- Accelerators reach down to lower elastic cross section
 - Potential guidance for direct detection searches
 - Rich physics in overlap region of LHC and 10–100 kg DM expt
 - Exciting opportunity to establish concordant model

WIMPs and SUSY

- LHC/ILC constraints compared with direct DM searches by Linear Collider Cosmology working group
 - Specify a benchmark model, eg, here LCC1 is mSugra 'bulk region,' consistent with WMAP relic density
 - Explore range of all models compatible with accelerator data
 - Constrain secondary parameters, eg, neutralino mixing angles and elastic cross section

How do we make measurements?

What nature has to offer

What you hope for!

WIMPs 'look' different – recoil discrimination

Photons and electrons scatter from electrons WIMPs (and neutrons) scatter from nuclei

- Measure division of deposited energy into multiple channels
 - ionization
 - heat
 - athermal phonons ⇒ timing
 - scintillation ⇒ timing
- Exploit differential response
- Also, background immunity from
 - directional
 - threshold

WIMPs 'look' different – recoil discrimination Photons and electrons scatter from electrons WIMPs (and neutrons) scatter from nuclei

In CDMS:

WIMPs 'look' different – recoil discrimination

Photons and electrons scatter from electrons

WIMPs (and neutrons) scatter from nuclei

WIMPs 'look' different – recoil discrimination

Photons and electrons scatter from electrons

WIMPs (and neutrons) scatter from nuclei

>50000:1 rejection

CDMS: Cryogenic "ZIP" detectors

Superconducting films that detect minute amounts of heat

Transition Edge Sensor sensitive to fast athermal phonons

Second Soudan Run WIMP-search data

34 kg-d after cuts

Betas: a low-yield background source

• Low-energy electrons (tagged •) that interact in detector surface "dead layer" result in reduced ionization yield

Second Soudan Run WIMP-search data

34 kg-d after cuts

ESTIMATE BKG: 0.4 ± 0.2 (sys.) ± 0.2 (stat.) electron recoils, 0.05 recoils from neutrons expected. Optimized for ~0.5 background events

1st Year CDMS Soudan Combined Limits

- Upper limits on the WIMP- nucleon cross section are 1.7×10⁻⁴³ cm² for a WIMP with mass of 60 GeV/c²
 - Factor 10 lower than any other experiment
- Excludes regions of SUSY parameter space under some frameworks
 - Bottino et al. 2004 in magenta (relax GUT Unif.)
 - Ellis et al. 2005 (CMSSM) in green

2-tower and combined: astro-ph/0509259

1-tower: PRL **93**, 211301 (2004); PRD **72**, 052009 (2005)

DAMA: Nal & Annual Modulation

1st Year CDMS Soudan Combined Limits

2-tower and combined: astro-ph/0509259

1-tower: PRL **93**, 211301 (2004); PRD **72**, 052009 (2005)

Spin-Dependent WIMP limits

___ different nuclear form factors

astro-ph/0509269

Following the method of C. Savage, P. Gondolo, and K. Freese, PRD70, 123513 (2004) (astro-ph/0408346).

Soudan and beyond: phased approach to 1-ton

Survey of other techniques

Edelweiss-I in Frejus Tunnel: "1 kg" stage

- First data taking in Fall 2000 at 4800 mwe depth
- Detector improvements: 2nd data set early 2002
- 3rd data taking: October 2002 March 2003

EDELWEISS-I results

- 2000-2003: Exposure of ~60 kg-d
 - Three nuclear recoil candidates (30-100keV) consistent with neutron bkg

Edelweiss-II

- 100-detector cryostat being installed at Frejus
- Phase 1 detectors:
 - 21 x 320-g NTD detectors ready
 - 7 x 400-g NbSI detectors expected end of 2005
 - metal-insulator transition additional fast component for surface event discrimination

CRESST II: Phonons and Scintillation

- Nuclear recoils have much smaller light yield than electron recoils
- Photon and electron interactions can be distinguished from nuclear recoils (WIMPs, neutrons)

Results from a 6g CaWO₄ prototype

- Very small scintillation signal for tungsten recoils
- Scaled up to 300g detectors

CRESST II: Phonons and Scintillation

Results from 20.5 kg-d expoure of two 300-g CaWO₄ prototypes

- No neutron shielding
- Observe low-yield events consistent with neutron rates and oxygen cross section & light yield
- Claim no tungsten recoils in light yield region below oxygen yield (not distinct from noise)

Astro-ph/0408006

Liquid Noble Detectors

- Liquid Xe, Ar, Ne Detectors
- Atomic excimer states provide recoil discrimination
 - Pulse Shape Discrimination
 - Secondary ionization signal
 - eg, dual phase
 - May readily scale to large mass
- Challenges
 - discrimination at low threshold
 - 87Kr, 39Ar backgrounds
- Several programs
 - Zeplin (UK/UCLA) Xenon
 - RESULTS from single phase PSD
 - Dual phase under construction
 - XENON (Columbia, Brown, Case, Yale, Florida)
 - 10-kg in construction at Gran Sasso
 - ◆ DEAP (LANL, Queens) Argon
 - ◆ CLEAN (Yale, LANL) Neon

Dual-phase LXe Time Projection Chamber (TPC)

B.A.Dolgoshein, V.N. Lebedenko, B.U. Rodionov, JETP Lett. 11 (1970) 513.

UK Collaboration: Zeplin I

Single-phase detector

- Measure primary scintillation
- Pulse shape discrimination

Zeplin I: Best limit on Xenon target

- 230 kg-days in 3.1-kg fiducial mass
 - Gamma calibration data from contemporaneous veto events
 - Systematics dominated no in situ neutron calibration
 - Trouble recondensing target

.....

DATA listed top to bottom on plot DAMA 1996 Exclusion Region (90%CL) CDMS June 2003, bkgd subtracted DAMA 2000 58k kg-days Nal Ann.Mod. 3sigma,w/o DAMA 1996 limit ZEPLIN 1 Pteliminary 2002 tesult Edelweiss, 32 kg-days Ge 2000+2002+2003 limit Edelweiss, 11.7 kg-days Ge 2000+2002 limit

Astroparticle Physics 23 (2005) 444–462

Technology demonstration 10 kg → **100 kg** → **Ton scale**

Bubble Chamber Revival

- 2-kg CF₃I Bubble Chamber Chicago group (Collar, Sonnenschien, Crisler)
- Tune thermodynamic parameters
 - Insensitive to min. ionizing and low-energy electron recoils
 - Stability (time between events) consistent with laboratory neutron background

Galactic origin: Directional signal & DRIFT

- Sensitive to direction of recoiling nucleus
 - Diurnal modulation signal galactic origin of signal
- Drift negative ions in TPC (J. Martoff, Temple U.)
 - No magnetic field required
 - Reduced diffusion
- Electron recoils rejected via dE/dx
- DRIFT I: Proof of principle
- DRIFT II 1-kg modules
 - Full demonstration
- Challenge is MASS: how big is needed for ~100 events?

Galactic origin: Directional signal & DRIFT

- Sensitive to direction of recoiling nucleus
 - Diurnal modulation signal galactic origin of signal
- Drift negative ions in TPC (J. Martoff, Temple U.)
 - No magnetic field required
 - Reduced diffusion
- Electron recoils rejected via dE/dx
- DRIFT I: Proof of principle
- DRIFT II 1-kg modules
 - Full demonstration
- Challenge is MASS: how big is needed for ~100 events?

Summary

- Dark matter remains a fundamental mystery
 - Central role in cosmology, but we don't yet know its nature
 - Possible solution lies in new fundamental particle physics
 - Direct detection of DM ⇔ Frontier HEP at accelerators
 - Explore interesting SUSY region on similar time scale
 - Potential to provide key info to ILC
 - An essential aspect to finding a concordant model:
 - dark matter in the laboratory ≠ dark matter in the halo!
 - measurements needed on both frontiers
 - particle mass
 - particle lifetime
 - relic density
 - Indirect detection: astrophysical signal from annihilation products
- Significant recent advances in sensitivity
 - New technologies have come online
 - Broad R&D enterprise
 - Next 5-10 years looks very exciting!

Thank you...

...on the web at: cdms.case.edu